Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 200: 116157, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364643

RESUMO

The Blue Growth strategy promises a sustainable use of marine resources for the benefit of the society. However, oil pollution in the marine environment is still a serious issue for human, animal, and environmental health; in addition, it deprives citizens of the potential economic and recreational advantages in the affected areas. Bioremediation, that is the use of bio-resources for the degradation of pollutants, is one of the focal themes on which the Blue Growth aims to. A repertoire of marine-derived bio-products, biomaterials, processes, and services useful for efficient, economic, low impact, treatments for the recovery of oil-polluted areas has been demonstrated in many years of research around the world. Nonetheless, although bioremediation technology is routinely applied in soil, this is not still standardized in the marine environment and the potential market is almost underexploited. This review provides a summary of opportunities for the exploiting and addition of value to research products already validated. Moreover, the review discusses challenges that limit bioremediation in marine environment and actions that can facilitate the conveying of valuable products/processes towards the market.


Assuntos
Poluentes Ambientais , Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Animais , Humanos , Biodegradação Ambiental , Petróleo/metabolismo , Poluentes Químicos da Água/análise
2.
Mar Drugs ; 21(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132926

RESUMO

Chitin/chitosan and collagen are two of the most important bioactive compounds, with applications in the pharmaceutical, veterinary, nutraceutical, cosmetic, biomaterials, and other industries. When extracted from non-edible parts of fish and shellfish, by-catches, and invasive species, their use contributes to a more sustainable and circular economy. The present article reviews the scientific knowledge and publication trends along the marine chitin/chitosan and collagen value chains and assesses how researchers, industry players, and end-users can bridge the gap between scientific understanding and industrial applications. Overall, research on chitin/chitosan remains focused on the compound itself rather than its market applications. Still, chitin/chitosan use is expected to increase in food and biomedical applications, while that of collagen is expected to increase in biomedical, cosmetic, pharmaceutical, and nutritional applications. Sustainable practices, such as the reuse of waste materials, contribute to strengthen both value chains; the identified weaknesses include the lack of studies considering market trends, social sustainability, and profitability, as well as insufficient examination of intellectual property rights. Government regulations, market demand, consumer preferences, technological advancements, environmental challenges, and legal frameworks play significant roles in shaping both value chains. Addressing these factors is crucial for seizing opportunities, fostering sustainability, complying with regulations, and maintaining competitiveness in these constantly evolving value chains.


Assuntos
Quitina , Quitosana , Colágeno , Animais , Materiais Biocompatíveis/economia , Quitina/economia , Quitosana/economia , Cosméticos , Preparações Farmacêuticas , Frutos do Mar , Colágeno/economia
3.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232800

RESUMO

Pyoverdines (PVDs) are a class of siderophores produced mostly by members of the genus Pseudomonas. Their primary function is to accumulate, mobilize, and transport iron necessary for cell metabolism. Moreover, PVDs also play a crucial role in microbes' survival by mediating biofilm formation and virulence. In this review, we reorganize the information produced in recent years regarding PVDs biosynthesis and pathogenic mechanisms, since PVDs are extremely valuable compounds. Additionally, we summarize the therapeutic applications deriving from the PVDs' use and focus on their role as therapeutic target themselves. We assess the current biotechnological applications of different sectors and evaluate the state-of-the-art technology relating to the use of synthetic biology tools for pathway engineering. Finally, we review the most recent methods and techniques capable of identifying such molecules in complex matrices for drug-discovery purposes.


Assuntos
Oligopeptídeos , Sideróforos , Ferro/metabolismo , Oligopeptídeos/metabolismo , Pseudomonas/metabolismo , Pseudomonas aeruginosa/metabolismo , Sideróforos/metabolismo
4.
Methods Mol Biol ; 2498: 293-305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35727551

RESUMO

Marine organisms have developed physiological and biochemical strategies to survive under the exposure of UV-B radiation. In particular, Antarctic marine bacteria, exposed to extremes of temperature, UV and ice, have adapted to cope with UV radiation by producing photoprotective molecules. Here, we describe (1) the sampling strategy to collect marine samples (surface water/ice and sediment samples) and (2) the selection strategy to isolate in these samples only UV-resistant marine bacteria.


Assuntos
Gelo , Raios Ultravioleta , Organismos Aquáticos , Bactérias/genética
5.
Mar Drugs ; 21(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36662182

RESUMO

Although several antibiotics are already widely used against a large number of pathogens, the discovery of new antimicrobial compounds with new mechanisms of action is critical today in order to overcome the spreading of antimicrobial resistance among pathogen bacteria. In this regard, marine organisms represent a potential source of a wide diversity of unique secondary metabolites produced as an adaptation strategy to survive in competitive and hostile environments. Among the multidrug-resistant Gram-negative bacteria, Pseudomonas aeruginosa is undoubtedly one of the most important species due to its high intrinsic resistance to different classes of antibiotics on the market and its ability to cause serious therapeutic problems. In the present review, we first discuss the general mechanisms involved in the antibiotic resistance of P. aeruginosa. Subsequently, we list the marine molecules identified up until now showing activity against P. aeruginosa, dividing them according to whether they act as antimicrobial or anti-virulence compounds.


Assuntos
Antibacterianos , Pseudomonas aeruginosa , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Virulência , Bactérias , Farmacorresistência Bacteriana Múltipla
6.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34445761

RESUMO

Natural products of microbial origin have inspired most of the commercial pharmaceuticals, especially those from Actinobacteria. However, the redundancy of molecules in the discovery process represents a serious issue. The untargeted approach, One Strain Many Compounds (OSMAC), is one of the most promising strategies to induce the expression of silent genes, especially when combined with genome mining and advanced metabolomics analysis. In this work, the whole genome of the marine isolate Rhodococcus sp. I2R was sequenced and analyzed by antiSMASH for the identification of biosynthetic gene clusters. The strain was cultivated in 22 different growth media and the generated extracts were subjected to metabolomic analysis and functional screening. Notably, only a single growth condition induced the production of unique compounds, which were partially purified and structurally characterized by liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). This strategy led to identifying a bioactive fraction containing >30 new glycolipids holding unusual functional groups. The active fraction showed a potent antiviral effect against enveloped viruses, such as herpes simplex virus and human coronaviruses, and high antiproliferative activity in PC3 prostate cancer cell line. The identified compounds belong to the biosurfactants class, amphiphilic molecules, which play a crucial role in the biotech and biomedical industry.


Assuntos
Antivirais/metabolismo , Glicolipídeos/metabolismo , Rhodococcus/metabolismo , Animais , Antivirais/análise , Chlorocebus aethiops , Técnicas de Cultura , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/metabolismo , Genoma Bacteriano , Glicolipídeos/química , Humanos , Metaboloma , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células PC-3 , Rhodococcus/química , Rhodococcus/genética , Succinatos/metabolismo , Tensoativos/química , Tensoativos/metabolismo , Células Vero
7.
Mar Drugs ; 19(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34436298

RESUMO

Sponges are known to produce a series of compounds with bioactivities useful for human health. This study was conducted on four sponges collected in the framework of the XXXIV Italian National Antarctic Research Program (PNRA) in November-December 2018, i.e., Mycale (Oxymycale) acerata, Haliclona (Rhizoniera) dancoi, Hemimycale topsenti, and Hemigellius pilosus. Sponge extracts were fractioned and tested against hepatocellular carcinoma (HepG2), lung carcinoma (A549), and melanoma cells (A2058), in order to screen for antiproliferative or cytotoxic activity. Two different chemical classes of compounds, belonging to mycalols and suberitenones, were identified in the active fractions. Mycalols were the most active compounds, and their mechanism of action was also investigated at the gene and protein levels in HepG2 cells. Of the differentially expressed genes, ULK1 and GALNT5 were the most down-regulated genes, while MAPK8 was one of the most up-regulated genes. These genes were previously associated with ferroptosis, a programmed cell death triggered by iron-dependent lipid peroxidation, confirmed at the protein level by the down-regulation of GPX4, a key regulator of ferroptosis, and the up-regulation of NCOA4, involved in iron homeostasis. These data suggest, for the first time, that mycalols act by triggering ferroptosis in HepG2 cells.


Assuntos
Antineoplásicos/farmacologia , Álcoois Graxos/farmacologia , Poríferos , Animais , Regiões Antárticas , Organismos Aquáticos , Linhagem Celular Tumoral/efeitos dos fármacos , Células Hep G2/efeitos dos fármacos , Humanos , Fitoterapia
8.
Microorganisms ; 9(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205451

RESUMO

Extreme marine environments are potential sources of novel microbial isolations with dynamic metabolic activity. Dietzia psychralcaliphila J1ID was isolated from sediments originated from Deception Island, Antarctica, grown over phenanthrene. This strain was also assessed for its emulsifying activity. In liquid media, Dietzia psychralcaliphila J1ID showed 84.66% degradation of phenanthrene examined with HPLC-PDA. The identification of metabolites by GC-MS combined with its whole genome analysis provided the pathway involved in the degradation process. Whole genome sequencing indicated a genome size of 4,216,480 bp with 3961 annotated genes. The presence of a wide range of monooxygenase and dioxygenase, as well as dehydrogenase catabolic genes provided the genomic basis for the biodegradation. The strain possesses the genetic compartments for a wide range of toxic aromatic compounds, which includes the benABCD and catABC clusters. COG2146, COG4638, and COG0654 through COG analysis confirmed the genes involved in the oxygenation reaction of the hydrocarbons by the strain. Insights into assessing the depletion of phenanthrene throughout the incubation process and the genetic components involved were obtained. This study indicates the degradation potential of the strain, which can also be further expanded to other model polyaromatic hydrocarbons.

9.
Mar Drugs ; 19(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810171

RESUMO

Marine sponges commonly host a repertoire of bacterial-associated organisms, which significantly contribute to their health and survival by producing several anti-predatory molecules. Many of these compounds are produced by sponge-associated bacteria and represent an incredible source of novel bioactive metabolites with biotechnological relevance. Although most investigations are focused on tropical and temperate species, to date, few studies have described the composition of microbiota hosted by Antarctic sponges and the secondary metabolites that they produce. The investigation was conducted on four sponges collected from two different sites in the framework of the XXXIV Italian National Antarctic Research Program (PNRA) in November-December 2018. Collected species were characterized as Mycale (Oxymycale) acerata, Haliclona (Rhizoniera) dancoi, Hemigellius pilosus and Microxina sarai by morphological analysis of spicules and amplification of four molecular markers. Metataxonomic analysis of these four Antarctic sponges revealed a considerable abundance of Amplicon Sequence Variants (ASVs) belonging to the phyla Proteobacteria, Bacteroidetes, Actinobacteria and Verrucomicrobia. In particular, M. (Oxymycale) acerata, displayed several genera of great interest, such as Endozoicomonas, Rubritalea, Ulvibacter, Fulvivirga and Colwellia. On the other hand, the sponges H. pilosus and H. (Rhizoniera) dancoi hosted bacteria belonging to the genera Pseudhongella, Roseobacter and Bdellovibrio, whereas M. sarai was the sole species showing some strains affiliated to the genus Polaribacter. Considering that most of the bacteria identified in the present study are known to produce valuable secondary metabolites, the four Antarctic sponges could be proposed as potential tools for the discovery of novel pharmacologically active compounds.


Assuntos
Bactérias/genética , Genoma Bacteriano , Metagenoma , Microbiota , Poríferos/microbiologia , Animais , Regiões Antárticas , Bactérias/classificação , Bactérias/metabolismo , Filogenia , Metabolismo Secundário
10.
Mar Drugs ; 19(2)2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33669858

RESUMO

Following the growth of the global population and the subsequent rapid increase in urbanization and industrialization, the fisheries and aquaculture production has seen a massive increase driven mainly by the development of fishing technologies. Accordingly, a remarkable increase in the amount of fish waste has been produced around the world; it has been estimated that about two-thirds of the total amount of fish is discarded as waste, creating huge economic and environmental concerns. For this reason, the disposal and recycling of these wastes has become a key issue to be resolved. With the growing attention of the circular economy, the exploitation of underused or discarded marine material can represent a sustainable strategy for the realization of a circular bioeconomy, with the production of materials with high added value. In this study, we underline the enormous role that fish waste can have in the socio-economic sector. This review presents the different compounds with high commercial value obtained by fish byproducts, including collagen, enzymes, and bioactive peptides, and lists their possible applications in different fields.


Assuntos
Peixes/metabolismo , Reciclagem/métodos , Resíduos/análise , Animais , Aquicultura , Pesqueiros , Eliminação de Resíduos/métodos
11.
Mar Genomics ; 57: 100831, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33250437

RESUMO

In the freezing waters of the Southern Ocean, Antarctic teleost fish, the Notothenioidei, have developed unique adaptations to cope with cold, including, at the extreme, the loss of hemoglobin in icefish. As a consequence, icefish are thought to be the most vulnerable of the Antarctic fish species to ongoing ocean warming. Some icefish also fail to express myoglobin but all appear to retain neuroglobin, cytoglobin-1, cytoglobin-2, and globin-X. Despite the lack of the inducible heat shock response, Antarctic notothenioid fish are endowed with physiological plasticity to partially compensate for environmental changes, as shown by numerous physiological and genomic/transcriptomic studies over the last decade. However, the regulatory mechanisms that determine temperature/oxygen-induced changes in gene expression remain largely unexplored in these species. Proteins such as globins are susceptible to environmental changes in oxygen levels and temperature, thus playing important roles in mediating Antarctic fish adaptations. In this study, we sequenced the full-length transcripts of myoglobin, neuroglobin, cytoglobin-1, cytoglobin-2, and globin-X from the Antarctic red-blooded notothenioid Trematomus bernacchii and the white-blooded icefish Chionodraco hamatus and evaluated transcripts levels after exposure to high temperature and low oxygen levels. Basal levels of globins are similar in the two species and both stressors affect the expression of Antarctic fish globins in brain, retina and gills. Temperature up-regulates globin expression more effectively in white-blooded than in red-blooded fish while hypoxia strongly up-regulates globins in red-blooded fish, particularly in the gills. These results suggest globins function as regulators of temperature and hypoxia tolerance. This study provides the first insights into globin transcriptional changes in Antarctic fish.


Assuntos
Proteínas de Peixes/genética , Regulação da Expressão Gênica/fisiologia , Globinas/genética , Perciformes/genética , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Peixes/química , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Globinas/química , Globinas/metabolismo , Masculino , Perciformes/metabolismo , Filogenia , Alinhamento de Sequência/veterinária
12.
Antioxidants (Basel) ; 9(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256101

RESUMO

The marine environment represents a prosperous existing resource for bioprospecting, covering 70% of the planet earth, and hosting a huge biodiversity. Advances in the research are progressively uncovering the presence of unknown microorganisms, which have evolved unique metabolic and genetic pathways for the production of uncommon secondary metabolites. Fungi have a leading role in marine bioprospecting since they represent a prolific source of structurally diverse bioactive metabolites. Several bioactive compounds from marine fungi have already been characterized including antibiotics, anticancer, antioxidants and antivirals. Nowadays, the search for natural antioxidant molecules capable of replacing those synthetic currently used, is an aspect that is receiving significant attention. Antioxidants can inactivate reactive oxygen and nitrogen species, preventing the insurgence of several degenerative diseases including cancer, autoimmune disorders, cardiovascular and neurodegenerative diseases. Moreover, they also find applications in different fields, including food preservation, healthcare and cosmetics. This review focuses on the production of antioxidants from marine fungi. We begin by proposing a survey of the available tools suitable for the evaluation of antioxidants, followed by the description of various classes of marine fungi antioxidants together with their extraction strategies. In addition, a view of the future perspectives and trends of these natural products within the "blue economy" is also presented.

13.
Biomolecules ; 10(7)2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645994

RESUMO

Oceans cover more than 70 percent of the surface of our planet and are characterized by huge taxonomic and chemical diversity of marine organisms. Several studies have shown that marine organisms produce a variety of compounds, derived from primary or secondary metabolism, which may have antiviral activities. In particular, certain marine metabolites are active towards a plethora of viruses. Multiple mechanisms of action have been found, as well as different targets. This review gives an overview of the marine-derived compounds discovered in the last 10 years. Even if marine organisms produce a wide variety of different compounds, there is only one compound available on the market, Ara-A, and only another one is in phase I clinical trials, named Griffithsin. The recent pandemic emergency caused by SARS-CoV-2, also known as COVID-19, highlights the need to further invest in this field, in order to shed light on marine compound potentiality and discover new drugs from the sea.


Assuntos
Antivirais/química , Organismos Aquáticos/química , Produtos Biológicos/química , Antivirais/farmacologia , Organismos Aquáticos/classificação , Produtos Biológicos/farmacologia , Coronaviridae/efeitos dos fármacos
14.
Mar Drugs ; 18(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326635

RESUMO

Due to its unique properties, collagen is used in the growing fields of pharmaceutical and biomedical devices, as well as in the fields of nutraceuticals, cosmeceuticals, food and beverages. Collagen also represents a valid resource for bioplastics and biomaterials, to be used in the emerging health sectors. Recently, marine organisms have been considered as promising sources of collagen, because they do not harbor transmissible disease. In particular, fish biomass as well as by-catch organisms, such as undersized fish, jellyfish, sharks, starfish, and sponges, possess a very high collagen content. The use of discarded and underused biomass could contribute to the development of a sustainable process for collagen extraction, with a significantly reduced environmental impact. This addresses the European zero-waste strategy, which supports all three generally accepted goals of sustainability: sustainable economic well-being, environmental protection, and social well-being. A zero-waste strategy would use far fewer new raw materials and send no waste materials to landfills. In this review, we present an overview of the studies carried out on collagen obtained from by-catch organisms and fish wastes. Additionally, we discuss novel technologies based on thermoplastic processes that could be applied, likewise, as marine collagen treatment.


Assuntos
Organismos Aquáticos/química , Colágeno/isolamento & purificação , Animais , Materiais Biocompatíveis , Peixes , Biologia Marinha , Gerenciamento de Resíduos/métodos
15.
Mar Genomics ; 49: 100724, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31735579

RESUMO

The ancient origins and functional versatility of globins make them ideal subjects for studying physiological adaptation to environmental change. Our goals in this review are to describe the evolution of the vertebrate globin gene superfamily and to explore the structure/function relationships of hemoglobin, myoglobin, neuroglobin and cytoglobin in teleost fishes. We focus on the globins of Antarctic notothenioids, emphasizing their adaptive features as inferred from comparisons with human proteins. We dedicate this review to Guido di Prisco, our co-author, colleague, friend, and husband of C.V. Ever thoughtful, creative, and enthusiastic, Guido spearheaded study of the structure, function, and evolution of the hemoglobins of polar fishes - this review is testimony to his wide-ranging contributions. Throughout his career, Guido inspired younger scientists to embrace polar biological research, and he challenged researchers of all ages to explore evolutionary adaptation in the context of global climate change. Beyond his scientific contributions, we will miss his warmth, his culture, and his great intellect. Guido has left an outstanding legacy, one that will continue to inspire us and our research.


Assuntos
Adaptação Fisiológica , Evolução Molecular , Peixes/genética , Globinas/genética , Sequência de Aminoácidos , Animais , Regiões Antárticas , Citoglobina/genética , Hemoglobinas/genética , Família Multigênica , Mioglobina/genética , Neuroglobina/genética , Sintenia
16.
Mar Drugs ; 17(10)2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31547548

RESUMO

The microorganisms that evolved at low temperatures express cold-adapted enzymes endowed with unique catalytic properties in comparison to their mesophilic homologues, i.e., higher catalytic efficiency, improved flexibility, and lower thermal stability. Cold environments are therefore an attractive research area for the discovery of enzymes to be used for investigational and industrial applications in which such properties are desirable. In this work, we will review the literature on cold-adapted enzymes specifically focusing on those discovered in the bioprospecting of polar marine environments, so far largely neglected because of their limited accessibility. We will discuss their existing or proposed biotechnological applications within the framework of the more general applications of cold-adapted enzymes.


Assuntos
Enzimas/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Biotecnologia/métodos , Catálise , Clima Frio , Temperatura Baixa , Humanos
17.
Adv Microb Physiol ; 73: 171-220, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30262109

RESUMO

This review is an overview on marine bioactive peptides with promising activities for the development of alternative drugs to fight human pathologies. In particular, we focus on potentially prolific producers of peptides in microorganisms, including sponge-associated bacteria and marine photoautotrophs such as microalgae and cyanobacteria. Microorganisms are still poorly explored for drug discovery, even if they are highly metabolically plastic and potentially amenable to culturing. This offers the possibility of obtaining a continuous source of bioactive compounds to satisfy the challenging demands of pharmaceutical industries. This review targets peptides because of the variety of potent biological activities demonstrated by these molecules, including antiviral, antimicrobial, antifungal, antioxidant, anticoagulant, antihypertensive, anticancer, antidiabetic, antiobesity, and calcium-binding bioactivities. Several of these peptides have already gained recognition as effective drug agents in recent years. We also focus on cutting-edge omic approaches for the discovery of novel compounds for pharmacological applications. With rapid depletion of natural resources, omic technologies may be the solution to efficiently produce a vast variety of novel peptides with unique pharmacological potential.


Assuntos
Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Cianobactérias/metabolismo , Microalgas/metabolismo , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Cianobactérias/crescimento & desenvolvimento , Descoberta de Drogas/métodos , Humanos , Microalgas/crescimento & desenvolvimento , Microbiologia da Água
18.
Biopolymers ; 109(10): e23114, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29603146

RESUMO

The ligand binding characteristics of heme-containing proteins are determined by a number of factors, including the nature and conformation of the distal residues and their capability to stabilize the heme-bound ligand via hydrogen-bonding and electrostatic interactions. In this regard, the heme pockets of truncated hemoglobins (TrHbs) constitute an interesting case study as they share many common features, including a number of polar cavity residues. In this review, we will focus on three proteins of group II TrHbs, from Thermobifida fusca (Tf-HbO) and Pseudoalteromonas haloplanktis TAC125 (Ph-HbO). Although the residues in positions G8 (Trp) and B10 (Tyr) are conserved in all three proteins, the CD1 residue is a Tyr in T. fusca and a His in P. haloplanktis. Comparison of the ligand binding characteristics of these proteins, in particular the hydroxo and CO ligands by means of resonance Raman spectroscopy, reveals that this single difference in the key heme cavity residues markedly affects their ligand binding capability and conformation. Furthermore, although the two Ph-HbOs (Ph-HbO-2217 and Ph-HbO-0030) have identical key cavity residues, they display distinct ligand binding properties.


Assuntos
Monóxido de Carbono/química , Hidróxidos/química , Análise Espectral Raman , Hemoglobinas Truncadas/química , Sequência de Aminoácidos , Heme/química , Ligantes
19.
Nitric Oxide ; 73: 39-51, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29275194

RESUMO

Despite the large number of globins recently discovered in bacteria, our knowledge of their physiological functions is restricted to only a few examples. In the microbial world, globins appear to perform multiple roles in addition to the reversible binding of oxygen; all these functions are attributable to the heme pocket that dominates functional properties. Resistance to nitrosative stress and involvement in oxygen chemistry seem to be the most prevalent functions for bacterial globins, although the number of globins for which functional roles have been studied via mutation and genetic complementation is very limited. The acquisition of structural information has considerably outpaced the physiological and molecular characterisation of these proteins. The genome of the Antarctic cold-adapted bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) contains genes encoding three distinct single-chain 2/2 globins, supporting the hypothesis of their crucial involvement in a number of functions, including protection against oxidative and nitrosative stress in the cold and O2-rich environment. In the genome of PhTAC125, the genes encoding 2/2 globins are constitutively transcribed, thus suggesting that these globins are not functionally redundant in their physiological function in PhTAC125. In the present study, the physiological role of one of the 2/2 globins, Ph-2/2HbO-2217, was investigated by integrating in vivo and in vitro results. This role includes the involvement in the detoxification of reactive nitrogen and O2 species including NO by developing two in vivo and in vitro models to highlight the protective role of Ph-2/2HbO-2217 against reactive nitrogen species. The PSHAa2217 gene was cloned and over-expressed in the flavohemoglobin-deficient mutant of Escherichia coli and the growth properties and O2 uptake in the presence of NO of the mutant carrying the PSHAa2217 gene were analysed. The ferric form of Ph-2/2HbO-2217 is able to catalyse peroxynitrite isomerisation in vitro, indicating its potential role in the scavenging of reactive nitrogen species. Here we present in vitro evidence for the detoxification of NO by Ph-2/2HbO-2217.


Assuntos
Proteínas de Bactérias/genética , Globinas/genética , Estresse Nitrosativo/genética , Pseudoalteromonas/genética , Regiões Antárticas , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Genoma Bacteriano , Globinas/química , Globinas/metabolismo , Heme/química , Heme/metabolismo , Inativação Metabólica/genética , Isomerismo , Óxido Nítrico/metabolismo , Óxido Nítrico/toxicidade , Ácido Peroxinitroso/metabolismo , Pseudoalteromonas/fisiologia , S-Nitrosoglutationa/farmacologia
20.
Adv Microb Physiol ; 66: 357-428, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26210108

RESUMO

Microbes produce a huge array of secondary metabolites endowed with important ecological functions. These molecules, which can be catalogued as natural products, have long been exploited in medical fields as antibiotics, anticancer and anti-infective agents. Recent years have seen considerable advances in elucidating natural-product biosynthesis and many drugs used today are natural products or natural-product derivatives. The major contribution to recent knowledge came from application of genomics to secondary metabolism and was facilitated by all relevant genes being organised in a contiguous DNA segment known as gene cluster. Clustering of genes regulating biosynthesis in bacteria is virtually universal. Modular gene clusters can be mixed and matched during evolution to generate structural diversity in natural products. Biosynthesis of many natural products requires the participation of complex molecular machines known as polyketide synthases and non-ribosomal peptide synthetases. Discovery of new evolutionary links between the polyketide synthase and fatty acid synthase pathways may help to understand the selective advantages that led to evolution of secondary-metabolite biosynthesis within bacteria. Secondary metabolites confer selective advantages, either as antibiotics or by providing a chemical language that allows communication among species, with other organisms and their environment. Herewith, we discuss these aspects focusing on the most clinically relevant bioactive molecules, the thiotemplated modular systems that include polyketide synthases, non-ribosomal peptide synthetases and fatty acid synthases. We begin by describing the evolutionary and physiological role of marine natural products, their structural/functional features, mechanisms of action and biosynthesis, then turn to genomic and metagenomic approaches, highlighting how the growing body of information on microbial natural products can be used to address fundamental problems in environmental evolution and biotechnology.


Assuntos
Organismos Aquáticos/metabolismo , Produtos Biológicos/metabolismo , Metabolismo Secundário , Anti-Infecciosos/metabolismo , Antineoplásicos/metabolismo , Organismos Aquáticos/genética , Ácido Graxo Sintases , Redes e Vias Metabólicas/genética , Família Multigênica , Peptídeo Sintases , Policetídeo Sintases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...